
FESCA 2004 Preliminary Version

Managing Complexity in Software
Development with Formally Based Tools

Constance Heitmeyer 1,2

Center for High Assurance Computer Systems
Naval Research Laboratory (Code 5546)

Washington, DC 20375

Abstract

Over the past two decades, formal methods researchers have produced a number
of powerful software tools designed to detect errors in, and to verify properties of,
hardware designs, software systems, and software system artifacts. Mostly used
in the past to debug hardware designs, in future years, these tools should help
developers improve the quality of software systems. They should be especially
useful in developing high assurance software systems, where compelling evidence is
required that the system satisfies critical properties, such as safety and security.
This paper describes the different roles that formally based software tools can play
in improving the correctness of software and software artifacts. Such tools can
help developers manage complexity by automatically exposing certain classes of
software errors and by producing evidence (e.g., mechanically checked proofs, results
of executing automatically generated test cases, etc.) that a software system satisfies
its requirements. In addition, the tools allow practitioners to focus on development
tasks best performed by people—e.g., obtaining and validating requirements and
constructing a high-quality requirements specification.

Key words: formal methods, software tools, formal specification,
formal verification, model checking, theorem proving, SCR.

1 Introduction

Over the past decade, our research group at NRL has developed a formal
state-machine semantics and a set of formally based tools to support re-
quirements specification in the SCR (Software Cost Reduction) tabular no-
tation [14,15,16,17]. The SCR notation has been used by a number of or-
ganizations in industry to develop and analyze requirements specifications

1 The author’s research is sponsored by the Office of Naval Research.
2 Email: heitmeyer@itd.nrl.navy.mil

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Heitmeyer

of practical systems, including flight control systems, weapons systems, and
space systems. For example, in 2001, Lockheed Martin used the SCR nota-
tion as well as the SCR tools, together with a test case generator, to detect
a critical error described as the “most likely cause” of a $165M failure in the
software controlling landing procedures in the Mars Polar Lander [5].

Our target systems are high assurance software systems, such as avionics
systems, safety-critical software for medical devices, and control systems for
nuclear power plants, where compelling evidence is required that the system
satisfies a set of critical properties. Among these properties are

• security properties (the system prevents the unauthorized disclosure and
modification of sensitive information, denial of service, unauthorized intru-
sions, and other malicious actions),

• safety properties (the system prevents unintended events that could result
in death, injury, illness, or property damage),

• fault-tolerant properties (the system guarantees a certain quality of service
despite faults, such as hardware, workload, or environmental anomalies),

• survivability properties (the system continues to fulfill its mission in the
presence of attacks, accidents, or failures), and

• real-time properties (the system delivers its outputs within specified time
intervals).

Two high assurance systems currently under investigation by our group are
CD, a cryptographic device for use in U. S. Navy systems, and the FPE (Fault
Protection Engine), a safety-critical software component of NASA spacecraft.
CD is a member of a family of software-based devices that will provide cryp-
tographic processing of data stored on several different channels, each channel
associated with a different host system. Because data on different channels
may have different security classifications, CD must enforce data separation,
i.e., ensure that data on one channel cannot influence, nor be influenced by,
data on a different channel. We are currently developing a plan for formally
specifying and verifying that the CD software, which uses a separation ker-
nel [24] to mediate access to data, enforces data separation.

The FPE is a complex, safety-critical software component of current NASA
spacecraft, a version of which will also be used in future spacecraft. The FPE’s
function is to monitor the health of the spacecraft’s software and hardware and
to coordinate and track responses to detected faults [8]. Because the FPE’s
function is crucial to the successful operation of the spacecraft, NASA needs
high assurance that the FPE has been correctly implemented. To evaluate the
correctness of the FPE implementation, NRL has developed a formal specifi-
cation of the most complex part of the FPE and a suite of test cases, derived
automatically from the FPE specification, for evaluating the FPE software.
The test cases were constructed using the algorithm described in [9].

2

Heitmeyer

Described below are 1) six classes of tools useful in constructing these and
other high assurance software systems and components and 2) some areas
in which such tools need improvement. In addition, an important aspect of
developing a high assurance software system is discussed that is minimally de-
pendent on tool support but is necessary for most tools to be effective. Despite
its importance, this aspect—the construction of a high quality specification
of the required behavior of a system or software component—has been largely
ignored both by software engineering researchers and by software developers.

2 On the Role of Tools

Tools can play an important role in obtaining high confidence that a software
system satisfies critical properties. Described below are six different roles that
tools can play in improving the quality of both software systems and software
system artifacts.

2.1 Demonstrate well-formedness

A well-formed specification is syntactically and type correct, has no circular
dependencies, and is complete (no required behavior is missing) and consis-
tent (no behavior in the specification is ambiguous). Tools, such as NRL’s
consistency checker [15], can automatically detect well-formedness errors. Ref-
erences [15] and [22] describe how a consistency checker found missing cases
and ambiguity in the specifications of both an avionics system and a flight
guidance system. In both cases, the checker automatically detected serious
errors overlooked by human inspections.

2.2 Discover property violations

In many cases, using a tool, such as a model checker, to analyze a system
specification for some critical property uncovers a violation of the property.
Given diagnostic information, such as a counterexample returned by the model
checker, the developer may find a flaw in the specification or one or more
missing assumptions. Alternatively, the formulation of the property, rather
than the specification, may be incorrect. In all of these cases, the result of
analysis can be extremely valuable. Reference [16] how model checking was
used to detect a safety property violation in a contractor specification of a
weapons control system. Recently, some researchers have begun using model
checking to detect property violations in software, rather than in software
specifications. One notable example is Ball and Rajamani’s SLAM project
which uses software model checking to detect bugs in device drivers [2]. The
result of SLAM’s successful use of model checking to detect serious software
bugs has led Microsoft to fund the development of a production-quality tool
that will use the techniques pioneered in SLAM to detect bugs in device drivers
and other similar programs.

3

Heitmeyer

2.3 Verify critical properties

Either a theorem prover or a model checker may be used to verify that a
software artifact, such as a requirements specification or a design specification,
satisfies a critical property. For example, [21] describes the use of a theorem
prover to verify that an early specification of CD satisfies a set of critical
security properties.

2.4 Validate a specification

A developer or domain expert may use a tool, such as a simulator or animator,
to check that a formal specification captures the intended system behavior.
By running scenarios through a simulator, the user can ensure that the system
specification neither omits nor incorrectly specifies the system requirements.
In developing the FPE specification, for example, simulation was not only
extremely valuable in debugging the specification, but also proved useful in
obtaining feedback from domain experts about the required behavior, and in
demonstrating the behavior captured by the FPE specification to the project
sponsors.

2.5 Construct test cases

From a formal specification, a test case generator can automatically derive
a suite of test cases satisfying some coverage criterion, such as branch cov-
erage [9]. In specifications expressed in either SCR or RSML (Requirements
State Machine Language) [12], a requirements language inspired by State-
charts, the value of each dependent variable in the specification is defined
by a total function. In branch coverage, each part (i.e., branch) of each of
these function definitions forms the basis for constructing a test case. Taken
together, the suite of test cases constructed in this manner “cover” every con-
dition (i.e., branch) in the specification. In the FPE project as well as other
projects involving high assurance systems, automated test case generation is
of high interest to software developers because 1) the cost of automatically
constructed tests is much lower than the cost of manually constructed tests,
and 2) a set of test cases that “covers” the specification can provide greater
confidence in the correctness of the software than a set of test cases developed
in an ad hoc manner.

2.6 Detect coding errors and code vulnerabilities

A static analysis tool can analyze a piece of software without executing it.
Such tools can automatically detect errors and vulnerabilities, such as unini-
tialized variables, erroneous pointers, and arithmetic and buffer overflows, in
both source and assembler code. Examples of tools that help detect errors of
this class in C code include Codesurfer [6] and Safer C, which finds dangerous
vulnerabilities in code, such as those described in [11]. Bishop et al. describe

4

Heitmeyer

how static analysis tools can help uncover vulnerabilities in the COTS software
used in many safety-critical systems [4].

3 Needed Tool Improvements

Although tools can be enormously useful in debugging, and in producing ev-
idence of correctness of, software and software artifacts, a number of tool
improvements are urgently needed. These improvements, some previously
recommended in [13], are described below.

3.1 Automated Abstraction

Before practical software specifications can be model checked efficiently, the
state explosion problem must be addressed—i.e., the size of the state space to
be analyzed must be reduced. An effective way to reduce state explosion is
to apply abstraction. For example, model checking the large specification of
a weapons control system [16] did not succeed until two kinds of abstraction
were applied. Unfortunately, the most common approach is to develop the
abstraction in ad hoc ways—the correspondence between the abstraction and
the original specification is based on informal, intuitive arguments. Needed
are mathematically sound abstractions that can be constructed automatically.
Recent progress in automatically constructing sound abstractions has been
reported in [3,16].

3.2 Understandable Feedback

When formal analysis exposes an error, the user should be provided with
easy-to-understand feedback useful in correcting the error. Techniques for
achieving this in consistency checking already exist (see, e.g., [18]). Although
counterexamples produced by model checkers often provide useful diagnostic
information, they are sometimes hard to understand. One promising approach
uses a simulator or animator to demonstrate and validate a counterexample.

3.3 Automatically Generated Invariants

Tools, such as the one described in [19], are needed that can automatically
construct invariants from a specification. Known invariants have many uses
in software development. They can be used as auxiliary lemmas in proving
theorems about the software specification. For example, some of the security
properties to be proven about an early CD specification [21] could not be
proved without auxiliary invariants. These invariants were automatically gen-
erated using the algorithms described in [19,20]. Invariants can also be used
in validating a requirements specification—domain experts can use automat-
ically generated invariants to determine whether the specification correctly
captures certain required system behavior.

5

Heitmeyer

3.4 More “Usable” Mechanical Theorem Provers

Although mechanical theorem provers have been used by researchers to verify
various algorithms and protocols, they are rarely used in practical software
development. For provers to be used more widely, a number of barriers need to
be overcome. First, the specification languages provided by the provers must
be more natural. Second, the reasoning steps supported by a prover should be
closer to the steps produced in a hand proof; current provers support reasoning
steps that are at too low and detailed a level. One partial solution to this
problem is to build a prover front-end designed to support specification and
proofs for a special class of mathematical models. An example of such a front-
end is TAME, a “natural” user interface to PVS [25] that is designed to specify
and prove properties about automata models [1]. Although using a mechanical
prover will still require mathematical maturity and theorem proving skills,
making the prover more “natural” and convenient to use should encourage
more widespread usage.

4 What Else Is Needed for Effective Use of Tools?

While researchers (and many software developers) usually expend significant
effort applying tools, they often exert much less effort and pay much less atten-
tion to creating a high-quality system specification. As a result, many current
specifications are difficult to understand and change and are also poorly orga-
nized. Urgently needed are higher quality specifications of requirements and
software designs. Such specifications are critically important because they
serve as a medium for precise communication between the customers, the de-
velopers, the verification team, and other stakeholders.

One way to improve the quality of specifications is to choose a “good” spec-
ification language. This language must be “natural”; to the extent feasible, a
language syntax and semantics familiar to the software practitioner should be
supported. The language must also have an explicitly defined formal seman-
tics, and it should scale. Moreover, well thought-out example specifications
expressed in the language should be available to practitioners. By studying
such examples, practitioners can learn how the language may be used to create
specifications that are both concise and easy to understand.

Our group and others (see, e.g., [7,5]) have successfully applied the SCR
tabular notation to express the required behavior of a number of software
systems and software components. The precise meaning of SCR specifications
is given by the state-machine semantics described in [15]. Others, such as
Heimdahl and Leveson [12], have proposed a hybrid notation that combines
tables and graphics.

Table-based specification languages have many advantages. Not only are
tabular specifications easy to understand and (relatively) easy for software
practitioners to construct, in addition, tables provide a precise, unambiguous
basis for communication among practitioners. They also provide a natural or-

6

Heitmeyer

ganization which permits independent construction, review, modification, and
analysis of smaller parts of a large specification. Finally, tabular notations
scale. Evidence of the scalability of tabular specifications was demonstrated
in the early 1990s when Lockheed engineers, used a set of tables to spec-
ify the complete requirements of the C-130J Flight Program [7], a program
containing over 250K lines of Ada code. In addition to tabular notations,
other user-friendly notations should be explored. For example, a number of
researchers and practitioners capture system requirements using scenarios rep-
resented as Message Sequence Charts (MSCs), a notation commonly used to
describe communication protocols. Requirements represented by MSCs can be
analyzed either directly (see, e.g., [23]) or translated to another representation
for analysis as in [26].

Even if a good specification language is chosen, a high quality specification
still requires great care and skill on the part of the specifier. Building a good
specification is somewhat analogous to designing a good proof. Like a good
proof, such a specification should be easy to understand. It should also, for
the most part, be free of redundancy, although some planned redundancy is
acceptable (e.g., a list of critical system properties). Reduction of redundancy
produces a more concise specification, an important attribute of specifications
of large, complex systems. Moreover, the specification should be carefully
organized both for ease of understanding and for ease of change. Finally, a
good specification should be a reference document, so that information in the
specification is easy to find.

5 Conclusion

Tools can be enormously useful in building high assurance software systems.
They can find errors that human inspections miss, help validate a specification,
provide mechanized support for verifying properties, reduce the time and effort
required to construct (and execute) a set of test cases, and provide more
confidence in the results of testing by constructing a suite of test cases based
on some coverage criterion. Thus, a set of powerful tools can liberate people to
do the hard intellectual work required to produce high quality, high assurance
software systems. Part of this intellectual effort should be channeled into the
acquisition of knowledge of the system and software requirements and into the
production of easy-to-understand, well organized requirements specifications.

References

[1] Archer, M, TAME: Using PVS strategies for special-purpose theorem proving,
Annals of Mathematics and Artificial Intelligence 29 (2000), 139–181.

[2] Ball, T. and S. K. Rajamani, The SLAM project: Debugging system software
via static analysis, Proceedings, 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2002), ACM SIGPLAN Notices
37, Portland, OR, ACM Press (2002), 1–3.

7

Heitmeyer

[3] Bensalem, S., Y. Lakhnech, and S. Owre, Computing abstractions of infinite
state systems compositionally and automatically, Proceedings, Computer-Aided
Verification, 10th Annual Conference (CAV ’98), Vancouver, B.C., Canada,
June 28 - July 2, 1998, LNCS 1427 (1998), 319–331.

[4] Bishop, P., R. Bloomfield, T. Clement, S. Guerra, and C. Jones, Integrity
static analysis of COTS/SOUP, Proceedings, 22nd International Conference
on Computer Safety, Reliability, and Security (SAFECOMP 2003), Edinburgh,
UK, Sept. 23-26, 2003, LNCS 2788 (2003), 63–76.

[5] Blackburn M., R. Knickerbocker, and R. Kasuda, Applying the test automaton
framework to the Mars Lander Touchdown Monitor, Proceedings, Lockheed
Martin Joint Symposium (2001).

[6] Codesurfer user guide and technical reference, Version 1.0, Grammatech (1999).

[7] Faulk, S.R., J. Brackett, P. Ward, and J. Kirby, Jr., The CoRE method for
real-time requirements, IEEE Software 9 (1992), 22–33.

[8] Feather, M.S., S. Fickas, and N. A. Razermera-Marny, Model-checking for
validation of a Fault Protection System, Proceedings, 6th International
Symposium on High Assurance Systems Engineering (HASE 2001), IEEE
Computer Society (2001), 32–41.

[9] Gargantini, A. and C. Heitmeyer, Using model checking to generate tests
from requirements specifications, Proceedings, ACM 7th European Software
Engineering Conference/7th ACM SIGSOFT Symposium on Foundations of
Software Engineering, Sept. 1999, Toulouse, FR, LNCS 1687 (1999), 146–162.

[10] Harel, D., Statecharts: A visual formalism for complex systems, Science of
Computer Programming 8 (1987), 231–274.

[11] Hatton, L., “Safer C: Developing software for high-integrity and safety-critical
systems,” McGraw-Hill, New York, N. Y., 1995.

[12] Heimdahl, M. P. E. and N. G. Leveson, Completeness and consistency
in hierarchical state-based requirements, IEEE Transactions on Software
Engineering 22 (1996), 363–377.

[13] Heitmeyer, C., On the need for practical formal methods, Proceedings,
Formal Techniques in Real-Time and Fault-Tolerant Systems, 5th International
Symposium, Lyngby, Denmark, Sept. 1998, LNCS 1486 (1998), 18–26.

[14] Heitmeyer, C. L., Software Cost Reduction, Encyclopedia of Software
Engineering, J. J. Marciniak, ed., 2nd Ed., John Wiley & Sons, Inc., New York,
N. Y. (2002), 1374–1380.

[15] Heitmeyer, C.L., R. D. Jeffords, and B. G. Labaw, Automated consistency
checking of requirements specifications, ACM Transactions on Software
Engineering and Methodology 5 (1996), 231–261.

8

Heitmeyer

[16] Heitmeyer, C., J. Kirby, Jr., B. Labaw, M. Archer, and R. Bharadwaj, Using
abstraction and model checking to detect safety violations in requirements
specifications, IEEE Transactions on Software Engineering 24 (1998), 927–948.

[17] Heitmeyer, C., J. Kirby, Jr., B. Labaw, and R. Bharadwaj, SCR*: A toolset for
specifying and analyzing software requirements, Proceedings, Computer-Aided
Verification, 10th Annual Conference (CAV ’98), Vancouver, B.C., Canada,
June 28 - July 2, 1998, LNCS 1427 (1998), 526–531.

[18] Heitmeyer, C., J. Kirby, Jr., and B. Labaw, Tools for formal specification,
verification, and validation of requirements, Proceedings, 12th Annual
Conference on Computer Assurance (COMPASS ’97), June 1997, Gaithersburg,
MD (1997).

[19] Jeffords, R. D. and C. L. Heitmeyer, Automatic generation of state
invariants from requirements specifications, Proceedings, Sixth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Nov. 3-5,
1998, Lake Buena Vista, FL (1998), 56–69.

[20] Jeffords, R.D. and C. L. Heitmeyer, An algorithm for strengthening state
invariants generated from requirements specifications, Proceedings, Fifth IEEE
International Symposium on Requirements Engineering (RE 2001), 27-31
August 2001, Toronto, Canada (2001), 182–193.

[21] Kirby, J., M. Archer, and C. Heitmeyer, SCR: A practical approach to building a
high assurance COMSEC system, Proceedings, 15th Annual Computer Security
Applications Conference, IEEE Computer Society (1999), 109–118.

[22] Miller, S. P., Specifying the mode logic of a flight guidance system in CoRE
and SCR, Proceedings, 2nd Workshop on Formal Methods in Software Practice
(FMSP’98), Clearwater Beach, FL, ACM Press (1998), 44–53.

[23] Peled, D., A toolset for message sequence charts, Proceedings, Computer-Aided
Verification, 10th Annual Conference (CAV ’98), Vancouver, B.C., Canada,
June 28 - July 2, 1998, LNCS 1427 (1998), 532–536.

[24] Rushby, J. M., Design and verification of secure systems, Proceedings, Eighth
Symposium on Operating Systems Principles, 14-16 Dec. 1981, Pacific Grove,
CA, Operating System Review 15 (1981), 12–21.

[25] Shankar, N., S. Owre, and J. Rushby, The PVS Proof Checker: A reference
manual, Computer Science Laboratory, SRI International, Menlo Park, CA
(1993).

[26] Uchitel, S., R. Chatley, J. Kramer, and J. Magee. LTSA-MSC: Tool Support
for Behaviour Model Elaboration Using Implied Scenarios, Proceedings, Ninth
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Warsaw, April 2003.

9

	Introduction
	On the Role of Tools
	Demonstrate well-formedness
	Discover property violations
	Verify critical properties
	Validate a specification
	Construct test cases
	Detect coding errors and code vulnerabilities

	Needed Tool Improvements
	Automated Abstraction
	Understandable Feedback
	Automatically Generated Invariants
	More ``Usable" Mechanical Theorem Provers

	What Else Is Needed for Effective Use of Tools?
	Conclusion
	References

